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Abstract

The Ground-Holding Policy Problem (GHPP) has become a matter of great interest in

recent years because of the high cost incurred by aircrait suffering from delays. Ground-

holding keeps a flight on the ground at the departure airport if it is known it will be unable

to land at the arrival airport. The GHPP is determining how many flights should be held

on the ground before take-off and for how long, in order to minimize the cost of delays.

When the uncertainty associated with airport landing capacity is considered, the GHPP

becomes complicated. A decision support system that incorporates this uncertainty,

solves the GHPP quickly, and gives good results would be of great help to air traffic

management.

The purpose of this thesis is to modify and analyze a probabilistic ground-holding

algorithm by applying it to two common cases of capacity reduction. A graphical user

interface was developed and sensitivity analysis was done on the algorithm, in order to see

how it may be implemented in practice. The sensitivity analysis showed the algorithm was

very sensitive to the number ofprobabilistic capacity scenarios used and to the cost ratio

of air delay to ground delay. The algorithm was not particularly sensitive to the number of

periods that the time horizon was divided into. In terms of cost savings, a ground-holding

policy was the most beneficial when demand greatly exceeded airport capacity. When

compared to other air traffic flow strategies, the ground-holding algorithm performed the

best and was the most consistent under various situations. The algorithm can solve large

problems quickly and efficiently on a personal computer.

Thesis Supervisor: Amedeo R. Odoni

Title: Professor, Department of Aeronautics and Astronautics and Department of Civil

Engineering
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Chapter I

Introduction

Air transportation networks today experience high costs from aircraft delays. Air

traffic flow management attempts to schedule air traffic demand against airport and

airspace capacity, on a daily basis, in a manner that minimizes the cost of these delays.

Ground-holding is used as a strategy to manage the flow of air traffic. The primary reason

for ground-holding is to enhance the safety and economy. It is safer and less expensive to

hold a flight on the ground at its airport of departure, rather than have the flight delayed in

the air, if it is known that there will be delays at its destination airport. The Ground-

Holding Policy Problem (GHPP) is concerned with deciding which flights should be

delayed on the ground before take-offand for how long, in order to minimize the cost of

delays.

The GHPP becomes complicated when the probabilistic nature of airport capacities is

introduced. Airport capacities for arrivals, as well as departures, are quite variable.

Weather conditions, airport activity, mechanical problems or human factors can have a

significant effect on capacity, though weather usually is the factor most responsible for

creating uncertainty in capacity predictions.

In this thesis, we look at the single airport static GHPP. We are interested in a model

that incorporates the uncertainty in airport landing capacity. This is needed in order to

have an accurate representation of reality and to give good solutions, in terms of delay

times and costs. It is also important that the model be able to be easily and usefully



implemented in practice. Airports need a decision support system that can solve large

problems in real-time and give the solutions in a simple, easy to read manner. One way of

accomplishing this would be a computer program that solves the problem quickly, is user

friendly, and gives answers in graphics form. In the following chapters, we analyze a

decision support system by applying a GHPP model to two cases of capacity reduction

that occur at many airports in the U.S.

The outline of this thesis is as follows. Chapter 2 reviews some relevant work that has

already been done on air traffic flow management, mainly Richetta's algorithm for the

single airport static ground-holding problem with probabilistic capacity scenarios. In

Chapter 3, we show how Richetta's model can be applied to two common cases of

capacity reduction, usually caused by the arrival of some kind of weather condition. We

show how this simplifies the formulation of the model, in terms of the number of variables

and constraints. The computer implementation of the model and its connection to a

graphical user interface (GUI) are then described. Chapter 4 discusses five areas of

experimentation that are performed in order to better understand Richetta's algorithm and

how it can be applied in practice. The first set of experiments are to see how an instance

of capacity reduction affects an airport differently at different times of the day. We do

these tests on three airports with different demand profiles in order to observe how

various airports are affected differently by a period of capacity reduction. The second and

third areas of experimentation test the algorithm's sensitivity to the number of capacity

scenarios used and to the number of time intervals the period of interest is divided into. In

these two sections, we are interested in the impact of the number of capacity scenarios and

time intervals on the results and solution time for the problem. The fourth set of

experiments show how the ratio of the cost of air delay per time period to the cost of

ground delay per time period can determine what kind of ground-holding policy will be

implemented. In the fifth area, we see how our algorithm performs in comparison to other

air traffic flow strategies. Finally in Chapter 5, conclusions are drawn. The ground-

holding algorithm can solve large problems quickly and performs well against other

strategies, especially in situations where demand greatly exceeds capacity. Because of the

algorithm's sensitivity to the number of capacity scenarios used and to the cost ratio, these



valuesshouldbedeterminedwith care, In this lastchapter,wealsodelveinto potential

topicsfor futureresearch.



Chapter 2

Air Traffic Flow Management

2.1 Literature Review

Air traffic management operations can be subdivided into air traffic control, which tries

to avoid "conflicts" and collisions between aircraft, and air traffic flow management,

which tries to optimize the flow of aircraft. Research done on the latter subject is the

focus of this chapter.

The two main problems in air traffic flow management are the ground-holding problem

and the problem of deciding how to redistribute flows in the air sectors. These problems

arise when demand exceeds the capacity at airports or air sectors.

Because of the stochastic nature of airport capacity, probabilistic models represent the

GHPP better than deterministic ones. A deterministic model has only one capacity profile,

whereas a probabilistic one can have multiple capacity profiles, each with an associated

probability. The GHPP can also be divided into the Single-Airport GHPP and the Multi-

Airport GHPP.

In the single-airport case, flights are scheduled to land at one "arrivals" airport, which

is the only capacitated element of the system under consideration. The model can be

either static or dynamic. Static means that all decisions for ground-holding are made once,

at the beginning of the time horizon, while in the dynamic model, ground-holding
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decisions are continually revised during the day, as new information about capacity is

received. A deterministic, static model is described in Terrab (1990) and in Terrab and

Odoni (1993). A probabilistic, static model is explained in Richetta (1991) and Richetta

and Odoni (1993). (This thesis explores this model and a detailed description is given in

the following subsection.) Richetta and Odoni (1994) go on to develop a probabilistic,

dynamic model which is a more general model of the single-airport GHPP.

In the multi-airport GHPP case, a network of airports is examined. This is done in

order to model situations in which there are connecting flights that may propagate delays

throughout the network of airports. This model has capacity constraints for arrivals and

departures, as well as connectivity constraints. There are four optimization models and

two heuristics, which essentially cover this topic. All existing models are deterministic.

The four optimization models are discussed, respectively, in Vranas (1992) and Vranas,

Bertsimas, and Odoni (1994a, 1994b); Andreatta and Brunetta (1995); Bertsimas and

Stock (1994); and Terrab and Paulose (1993). It is believed that the Bertsimas and Stock

model performs best in most cases (Andreatta and Brunetta (1995)). The two heuristics

are based on "priority rules", which are used to assign ground-holding times to sequences

of aircrai_ at each airport. These two heuristics are by Andreatta, Brunetta, and Guastalla

(1994) and by Navazio and Romanin-Jacur (1995).

Another area of air traffic flow management research is concerned with redistributing

flows in airspace by rerouting flights. This problem has been analyzed by using an origin-

destination network that models airports and enroute air traffic sectors. Existing models

in this area are deterministic. An important optimization model is the one by Bertsimas

and Stock (1994). Computationally, this has been the most successful model so far. Two

other optimization models are the Time Assignment Model [Boyd, Burlingame, and

Lindsay (1993, 1994, 1995)] and the Space-Time Network [Helme (1992, 1994)]. There

are also two heuristics, the Multiple Airport Scheduler [Epstein, Futer, and Medvedovsky

(1992)] and the Computer Assisted Slot Allocation Algorithm [Philipp and Gainche

(1994)].
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Thischapterfocusesonhowto optimallysolvethe single-airportstaticGHPP,as

describedby Richetta.Themodelisaprobabilisticonethatincorporatesvariousairport

landingcapacityprofiles,eachwith a particularprobability,into theGHPPmodel.

2.1.1 Richetta

The model, and the ensuing algorithm, described in "Solving Optimally the Static

Ground-Holding Policy Problem in Air Traffic Control" by Richetta and Odoni is the basis

for the work done in this thesis. Therefore, it is important to give a detailed description of

this model.

The model was developed in order to incorporate into GHP decision-making the

uncertainty in airport capacity. Because of this uncertainty, there will be times when

available landing capacity is wasted, even with an optimal ground-holding policy. This is

because air traffic managers tend to be "conservative" if expecting bad weather. If they

are too "liberal", then there will be instances where aircraft suffer excessive delays in the

air because there is not enough landing capacity. When considering the trade-off between

a conservative policy, that may assign too much ground-holding and waste available

capacity, and a liberal policy, that may lead to more expensive air delays, air traffic

management must weigh the cost of holding an aircraft on the ground versus the cost of

having an aircraft absorb the delay in the air. Thus, a good ground-holding policy must

consider the probabilities of the various possible values of airport capacity, as well as the

cost ratio of ground and air delay.

Richetta developed a static model for the multi-period single-airport GHPP. It can be

solved on a personal computer using stochastic linear programming with one stage. The

model allows for different probabilistic capacity scenarios and different aircraft classes.

The GHPP is solved on an aggregate level. This means the solution gives information on

how many aircraft should be delayed and for how long, but does not say which individual

aircraft should be delayed.

12



Fig. 2-1 : Simplified Model

queue

A representation of the simplified model can be seen in Fig. 2-1. The key ideas of this

model are:

, There is only one "arrivals" airport. N aircraft (F_...,FN) leave the various

departure airports and form a queue for the runway at the "arrivals" airport.

• The "arrivals" airport is considered to be the only element in the model with

restricted capacity.

• The departure time and flight length of all aircraft are deterministic and known

at the beginning of the time interval.

• The time interval, [0,B], is divided into T equal parts. The earliest departure is at

time 0 and the latest arrival is at B.

• Because this is a static model, the assumption is that Q different capacity scenarios

and their associated probabilities, Pq, are given at time 0. The capacity at period

T+l equals N, the total demand of aircraft for the "arrivals" airport. This ensures

that all aircraft will be able to land within T+I periods. Since demand decreases

toward the end of the day, it is plausible to assume all flights will land by the end

of the day.

, The cost functions for ground and air delay are known for each aircraft.

13



Notation is definedasfollows:

Mqi

Nki

Xqkij :

C_(k,i):

Ca

Wqil

The capacity for period i under scenario q. The capacity for period T+ 1=N.

(q=l,...,Q; i=l,...,Y+l)

The number of aircraft of class k scheduled to land at the "arrivals" airport

in period i. (k=l,...,K; i=l,...,T)

The decision variables showing how many aircraft of class k scheduled to

land at the "arrivals" airport in period i, but are rescheduled to arrive in

period j under capacity scenario q, with a ground delay of (j-i) time periods.

(q=l,...,Q; k=l,...,K; i=l,...,T; i_<j<Y+l)

The cost of delaying an aircraft of class k on the ground for i periods.

(k=l,...,K; i=l,...,Y-1)

The cost of delaying an aircraft in the air for one period. This is assumed to

be a constant because of the FCFS decision for aircraft waiting to land.

The number of aircraft that cannot land at the "arrivals" airport in period i

under capacity scenario q. (q=l,...,Q; i=l,...,Y)

The final formulation for the static GHPP is reached after four stages. The first stage

gives an integer linear programming problem for one capacity scenario and one class of

aircraft. The second stage transforms this formulation into a min. cost flow problem. In

the third stage, the probabilities are introduced and the min. cost flow problem becomes a

distribution problem Finally, in the fourth stage, the formulation changes when a set of

coupling constraints are added.

In the first stage, in order to simplify the model, it is assumed that there is only one

capacity scenario with probability one and only one type of aircraft: class. The formulation

is an integer linear programming problem and is as follows:

14



T T+I T

Min _ _ Cs(j-i) Xqij+
i=l j=_*l i=1

S.T,

T+I

(i) _ Xqij = Ni i=l,...,T
)=t

(ii) Wqi > _ Xqji q'- Wqi-i - Mqi

j=l

Wqi ca

(iii) Xq_j, Wq_ >_ 0 and integer

i=l,...,T+l; Wqo = Wqx+j =0

The objective function is a linear cost function that minimizes the cost of ground and

air delays. Constraints (i) ensure that all aircraft scheduled to land in period i will indeed

land before the end of the day. This means that an aircraft meant to arrive during period i

will land in a time somewhere between periods i and T+I. The second set of constraints

comes from the flow balance at the end of each period for the "arrivals" airport.

The second stage converts the above formulation into a minimum cost flow problem.

A network picture of this can be seen in Fig. 2-2. The left column of nodes are the supply

nodes with supply Ni and the center column of nodes are the demand nodes with demand

Mi. The cost on the arcs going from the supply nodes to the demand nodes is the cost of

ground-hold delay and the flow represents the rescheduling of aircraft. The arcs that go

from one demand node to the subsequent demand node have a cost equal to the cost of

airborne delay and a flow equal to the number of aircraft that incur air delay. The node in

the right column is a surplus node and all arcs leaving this node to go to the demand nodes

have zero cost and a flow of surplus capacity.

15



Fig. 2-2: Minimum Cost Flow Problem

Demand Surplus

s 1

XlT+

XiT4

i+1

+1

ST+l

The formulation for this network then becomes:

T T+I T

Min _ _ Cg (j-i) Xqij + _ Wqi Ca

i=1 3=1+I t=l

S.W.

T+I

(i) _ Xqij = Ni i=l,...,T
2=i

T+I T

(ii) _ Sqi = E Mqi

I=1 t=l

i

(iii) Wqi - ( Wqi-I + E Xqji + Sqi ) = - Mqi
]=1

i=l,...,T+l; Wqo = WqT*l =0

(iv) Xqij , Wqi, Sqi -> 0

The objective function has not changed from that of the first stage. Constraints (i) and (ii)

correspond to the supply nodes while constraints (iii) correspond to the demand nodes.

16



The integrality constraints have been relaxed, though. This is possible because of the total

unimodularity of the constraint matrix and the fact that the supply and demands are

integer.

Uncertainty is introduced in the third stage and the minimum cost flow problem

becomes a distribution problem. To reiterate, there is only one class of aircraft and the

different probabilistic capacity scenarios for all time periods are known at time zero. The

formulation now becomes:

Q T T+I T

Min _ Pq (Z Z c_ (j-i) Xqij + c,'_'_ Wqi )

q=l i=1 )=i_l l-I

S.T. for each scenario q=l,...,Q:

T*I

(i) _ Xqij =Ni i=l,...,T
j-I

T+I T

(ii) Z Sqi: Z Mq i

t=l _=1

(iii) Wqi - ( Wqi-I + Z Xqji + Sqi) = - Mqi

J=]

i=l,...,T+l; Wq0 = WqT+l =0

(iv) Xqij, Wqi, Sqi -> 0

Notice that the above constraints are identical to those in stage two. This means that the

distribution problem can be solved by solving Q separate min. cost flow problems. The

optimal solution will give a ground-holding policy for each scenario, but in practice, only

one policy can be followed because a policy must be made before the actual capacity is

known. Therefore, in stage four, a set of constraints that sets Xqij equal for all q must be

added and is as follows:

X_ij = X2_j = X3_j =. ........ = XT0 i=l,...,T; i___j_<T+I

This coupling constraint now causes total unimodularity to be lost, and it is still unknown

whether unimodularity indeed exists in this problem. While total unimodularity is a

sufficient condition for obtaining integer solutions to a relaxation of an integer linear

program, unimodularity is necessary. However, Richetta proceeds to relax the integrality

constraints because he could not come up with a counterexample of non-integer solutions

and even if solutions were to be non-integer, they could be rounded without ruining the

17



goodness of a solution. It should be noted here that we did about a few hundred runs of

the formulation and did not once get a non-integer solution.

The coupling constraints can be removed via substitution into the distribution problem

formulation. The new constraint matrix makes it impossible to solve the problem with fast

decomposition techniques, but there will now be fewer constraints and variables, making it

possible to solve quickly on a personal computer. Now, all that is needed is to rewrite the

formulation so that it includes K classes of aircraft. The final formulation thus looks like:

K T T+I Q T

Min _ _ _ Cg(k,j-i) Xkij+c,(_-"_ Pq_ Wqi)
k=l 1=1 j=i+l q-1 i=1

Xkij = Nki

S.T.

T+I

(i) Z
)=t

T+I T

(ii) _ Sq_= _ Mq_ q=l,...,Q
I=1 J=l

K

(iii) Wqi-Wqi-1-Z £ Xkji-Sqi =-Mqi

k=l J=l

(iv) Xkij, Wqi, Sqi -> 0 and integer

k=l,...,K; i=l,...,T

q=l,...,Q; i= 1,...,T+ 1; Wqo=Wq_+l=O

To see how "good" his formulation was, Richetta compared its performance to that of

two other algorithms, the deterministic and the passive. The deterministic algorithm

chooses the capacity scenario with the highest probability as the only scenario and

proceeds to solve the static GHPP by assigning available capacity as FCFS, with all delays

being ground-hold ones. The passive algorithm has a planning strategy that allows all

aircraft to take off according to schedule and any delays will be airborne delays. There are

multiple probabilistic capacity scenarios and these are used to figure out the air delays.

The passive algorithm will give the minimum amount of delay possible.

Richetta ran his algorithm for a single class of aircraft and evaluated its performance

against these two algorithms for different demand and capacity cases. The static algorithm

had minimum cost, with the deterministic as second cheapest, and the passive with the

highest cost. However, as the cost of air delays increases, the advantage of static

diminishes in respect to deterministic. This is because deterministic has the lowest amount

18



of air delay. But generally,staticwill giveminimumcost. Anotherimportantresultwas

that thetotal expecteddelays,whenusingthestaticalgorithm,waswithin 15°,4of the

minimumexpecteddelays,theamountgivenbythepassivealgorithm. Thoughstatichas

moredelaytimethantheminimumrequired,mostof its delayareground-holdingdelays

whicharecheaperthanairbornedelays.Thus, Richetta's algorithm appears to be a very

efficient algorithm that can be used to solve problems of sizes comparable to actual

situations quickly on a personal computer.
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Chapter 3

Development of the Static Ground-

Holding Problem

In this chapter, our simplified version of Richetta's model for the static ground-holding

problem is introduced and explored. The simplified model deals with a single class of

aircraft, instead of several classes. The formulation of this model and the changes in it,

due to the simplification, are described in the first section of this chapter. The second

section shows two common cases of airport capacity reduction that this model can be

applied to. In the third section, the computer implementation of this formulation is

described.

3.1 Formulation of the Model

As reviewed in Chapter 2, Richetta's Algorithm for the static ground-holding problem

can be solved for K classes of aircraft. However, common practice in the United States

today assigns available airport capacity for arrivals of aircraft on a first-come first-serve

basis. This implies that the need to distinguish between type of aircraft, in order to

determine priority for a flight in the "arrivals" queue, is superfluous. Thus, having only

one class of aircraft, when determining a ground-holding policy, would comply with

current practice in the U.S.

20



Treatingall arrivingaircraftequallywill simplifytheground-holdingcostfunction,

Cg(k,i),whichis thecostof delayinganaircraftof classk onthegroundfor i periods.

Thiswill now dependsolelyon thenumberof timeperiodsanaircraftisheldon the

ground. Wechose,though,to usealinearcostfunctionandtreattheground-holdingcost

asa constant,% pertimeperiod. Thisdecisionallowstheeffectof theratio of air-hold

costto ground-holdcostto beanalyzed.Differentratioscanaffectapolicy to beeither

conservativeor liberal. A highratio of air to groundcostwill resultin agreatdealof

ground-holdingbecauseit is far lessexpensivethanair delays(a"conservative"strategy).

Makingtheair costslightlylessthanthegroundcostwill ensureapassiveground-holding

strategy.Thismeansall aircraftwill leavetheairportsof originaccordingto scheduleand

all delayswill beabsorbedin theair. Thus,varyingc_andcgallowsusto seehow the

problemis solvedfor differentground-holdingstrategies.

Incorporatingthesechangesinto thefinalformulationfrom Chapter2 (page18),we

obtaina simplifiedversion,thatis asfollows:
T T+I Q T

Min c,(_-_ _ (j-i) Xij)+ c,(_ Pq Z Wqi )
i=l )=J-1 q=l i=l

S.T.

T+I

(i) _'_ Xij = Ni i=l,...,T
J=l

T+I T

(ii) _ Sq, = Y_ M, q=l,...,Q
_-1 i=1

(iii) Wqi -Wqi-i -X Xji - Sqi = - 1VI, q=l,...,Q; i=l,...,T+l; Wq0=Wqx+l=0
)=1

(iv) Xij, Wqi, Sqi > 0 and integer

The number of variables and constraints in the above formulation has been reduced

significantly. In the formulation where K aircraft classes are considered, there are

(KT+(T+2)Q) constraints and (K((T2+3T)/2)+(2T+I)Q) variables, where T is the number

of time periods and Q is the number of probabilistic capacity scenarios. These values were

obtained in the following manner:
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Number of Constraints

- For the set of constraints (i), there are KT constraints.

- For the set of constraints (ii), there are Q constraints.

- For the set of constraints (iii), there are Q(T+ 1) constraints.

- Summing the above gives KT+(T+2)Q constraints.

Number of Variables

- For the variables Xkij, where k=l,...,K, i=l,...,T, and i_<j<T+l, there are

T÷I

K_-_ i = K((T2+3T)/2) variables.
_=2

- For the variables Sqi, where q=l,...,Q and i--l,...,T+l, there are Q(T+I) variables.

- For the variables Wqi, where q=l,...,Q and i=l,...,T, there are QT variables.

- Summing the above gives K((T2+3T)/2)+(2T+I)Q variables.

In the simplified version, K--1 and it can easily be seen that the number of constraints

and variables are now, respectively, (T+(T+2)Q) and ((T2+3T)/2)+(2T+l)Q. Thus, the

number of constraints and variables is more dependent on T.

3.2 Application of the Model

In this thesis, we look at a single airport's schedule of arrivals and the landing capacity

for these arrivals over a time horizon of one day. The schedule of arrivals is deterministic

and the capacity is probabilistic. The ground-holding model described in this thesis was

developed so that the probabilistic nature of airport capacities could be incorporated into

decision making on ground-holding The uncertainty associated with the landing capacity

is often a result of adverse weather conditions. This section describes the two common

cases of capacity reduction that will be analyzed in Chapter 4. These two cases are when

there is uncertainty in the occurrence time of capacity reduction and when there is

uncertainty in the amount of capacity reduction.

3.2.1 Uncertainty in Time

This is the case where the amount of capacity reduction and the duration of the

reduction are approximately known, but the time of occurrence is not. A condition that

22



couldresultin this typeof situationisa blizzardpassingthroughtheareawhereamajor

airport is located. Whenthisoccurs,if theairportdoesnot shutdowncompletely,the

availablerunwaycapacityis reducedsignificantly.It maybedifficult to pinpointtheexact

arrival timeof theblizzard. Currentweatherforecastingtechnologycanfollow thepathof

theblizzardandbeableto giveagoodapproximationof its duration,but the arrivaltime

isusuallygivenin arange.For example,atypicalweatherforecastmaysaythatthe

blizzardis expectedto arrivebetween9:00AM andnoonandwill lastabouteight hours.

Fig. 3-1showsagraphof thiscaseof capacityreduction,wheretheuncertaintyis in the

starttimeof thereduction.

Fig3-1 :Uncertaintyin Time
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In Fig. 3-1, some kind of weather condition is expected to arrive between a and b,

thereby reducing capacity for a length of time, S. It should be noted that only the arrival

time is uncertain. No matter when the capacity reduction occurs, it will last for S time

units. If a storm arrives at time a, capacity reduction will last until time c and if the storm

arrives at time b, it will last until time d. Similarly, if the storm arrives for some time x,

between a and b, capacity reduction will last until time x+S. There is a probability

distribution for this storm arrival time. The distribution could be uniform, triangular,

normal, one-tailed, etc. Because the time axis is in discrete time intervals, a probability
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could be associated with each time increment between a and b, including a and b. If we

assume time increments are one time unit apart, then there would be (b-a+l) probabilities,

each one corresponding to a capacity scenario. (If a=3 and b=5, then a storm could arrive

at 3, 4, or 5, giving three possibilities, 5-3+1=3.) Capacity Scenario 1 would then have

the capacity drop from a until c, when it would go back up. Capacity Scenario 2 would

drop from (a+l) until (c+l) and then go back up. This reasoning continues through

Capacity Scenario (b-a+l), where the capacity drops from b until d, where it then goes

back up. If the distribution was uniform, then each scenario would have a probability

associated with it equal to 1/(b-a+l). Another possibility is that instead of a probability

profile for every time increment between a and b, we could have three profiles. Under

Capacity Scenario 1 the drop in capacity would begin at a (probability 1/3), under

Scenario 2 it would begin at x (probability 1/3), and under Scenario 3 it would begin at b

(probability 1/3). A question that arises is whether, for the uniform distribution (or any

distribution), we need (b-a+l) capacity scenarios or whether fewer scenarios might be a

sufficient approximation.

In order to further clarify the above situation, we will use an example. Let us say that

at the beginning of the day, we are given a weather forecast that predicts a storm is going

to arrive at Logan Airport some time between 10 AM and noon and will last roughly four

hours. During the storm, airport capacity will be reduced from 60 arrivals per hour to 36

arrivals per hour. Also, the storm is equally likely to begin at any time between 10 AM

and noon.

In this example we are looking at the capacity for a 17 hr. day that begins at 7 AM and

ends at midnight. Because demand between midnight and 7 AM is small, we will assume

that all flights are able to land in this time frame. Each hour is divided into 15 minute

periods, giving the total number of periods, T, equal to 68 (17 hrs.*4=68). For this

example, the highest level of capacity is 60 arrivals/hr, and the storm will reduce the

capacity to 36 arrivals/hr. Because each hour has been divided into 15 minute intervals,

these two capacities, respectively become, 15 arrivals/15 min. and 9 arrivals/15 min. Fig.

3-2 illustrates this example. The values on the x-axis, time, and the values on the y-axis,

capacity, are discrete integers.
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Fig. 3-2: Example of Uncertainty in Time
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Therefore, in this example, capacity will be at 15 arrivals/15 min. up to at least period

13 (10 AM), then at some time between time periods 13 and 20, capacity will drop down

to 9 per 15 min., for 16 time periods (4 hrs.) and then capacity will go back up to 15

arrivals/15 min. Thus, the range of time intervals that capacity will be reduced is [(13-29),

(14-30),..., (19-35), (20-36)] and the reduction is equally likely to occur at any one of

these time intervals. There would then be eight capacity scenarios, as shown in the

shadowed range, and each one would have a probability of. 125. One of the issues we

shall investigate is whether these 8 scenarios can be replaced, without much loss in

accuracy, by fewer scenarios, e.g., by 4 which begin at 30 minute intervals instead of 15

minute ones.

3.2.2 Uncertainty in Capacity

The second type of capacity reduction that will be examined is the case where the time

of occurrence and the duration of the capacity reduction are approximately known, but the

amount of reduction is not. An instance of this case may be an airport that often has a

great deal of fog, like San Francisco. When fog occurs in the early part of the day, it may

have begun in predawn and it will be dispersed soon atter the sun rises, if it is going to be

a sunny day. Therefore, when the fog begins, the length of time it will last is roughly
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known,but how badlythiswill affecttheairportcapacityis uncertain.Fig. 3-3showsthis

typeof capacityreduction.

Fig. 3-3 Uncertaintyin Capacity
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In Fig. 3-3, capacity reduction will occur at time a and last until time b. These are

assumed to be known values. The capacity per time period is the factor that has

uncertainty associated with it. For the time period a to b, capacity will be somewhere

between the values ofx and z, but the exact value is unknown. From time zero to a, and

then from time b to T, airport capacity will be z. It is only between a and b, that the

capacity may drop. For the amount of capacity reduction, there is a probability

distribution. Every integer value between x and z has an associated probability. If the

distribution is uniform, then the values x, x+ 1,..., y,..., z-1, z each would have a probability

of 1/(z-x+ 1).

Just as in the previous subsection, we will use an example to make things more clear.

Fog is expected to roll in atter midnight and is not expected to disappear until around 10

AM. Depending on how dense the fog is, airport landing capacity will be somewhere

between 36 arrivals per hr. and 60 arrivals per hr. The capacity is equally likely to be

anywhere between these two values. Breaking one hour into four 15 minute periods and

looking at a time horizon between 7 AM and midnight, T will equal 68. Airport capacities
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of 36 arrivals/hr, and 60 arrivals/hr, become respectively, 9 arrivals/15 min. and 15

arrivals/15 min.. This is shown in Fig. 3-4.

Fig. 3-4: Example of Uncertainty in Capacity
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In this example, for the time periods 1 to 12, the capacity will be somewhere between 9

and 15 arrivals/15 min. For the time periods 13 to 68, capacity will be at the maximum of

15 arrivals/15 min. There will be seven capacity scenarios, each with a probability of 1/7.

Capacity Scenario 1 would have a capacity of 15 for all time periods. Capacity Scenario 2

would have a capacity of 14 for time periods 1-12 and then the capacity would be 15 for

time periods 13-68. This continues until capacity scenario seven, when the capacity is 9

for time periods 1-12 and then is 15 from time period 13 on.

3.3 Computer Implementation

All experiments were done on Sun Sparc 10 stations. To solve the static ground-

holding formulation, the LP optimizer CPLEX was used. Either the C language or the

General Algebraic Modeling System (GAMS) package is needed to put the formulation in

a form that CPLEX can read and then solve. First, GAMS was tried because it is rather

straight-forward and relatively easy to learn. With GAMS, though, we ran into memory
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problems.We,therefore,usedtheC languagein orderto takefull advantageof the

callablelibrariesof CPLEX.

TheC programwaslinkedto agraphicaluserinterface(GUI), whichwascodedin X-

WindowsusingMotif to displayinputsandoutputs. Inputscanthusbechangedeasilyand

theprogramrerun. Theinputsandoutputsareasfollows:

In__nputs

- ca: costof delayinganaircraf_in theair for oneperiod

- c8: costof delayinganaircraftonthegroundfor oneperiod

- Q : numberof capacityscenarios

- Pq:probabilityassociatedwith capacityscenarioq

- N_: the originalscheduleof flightsfor periodsi=l,...,T
T

- Mqi : for scenario q, the capacity for periods i=l,...,T+l, where MqT.1=_--_ Ni
7=1

Outputs

- The new schedule of flights is: NFSj=2 X_j where i=l,...,T; i_<j_<T+l
i=1

- The number of flights unable to land during period i under capacity scenario q is:

Wqi where q=l,..,Q; i=l,...,T

Q r

- The total expected air delay is: Air delay=_-"_ (pq_'_ Wqi)
q=l 7=1

T T+I

- The total ground-holding delay is: Ground delay = _ _ (j-i) Xij
i=l j=i+l

- The total delay: Total delay= Total Ground delay + Total Air delay

- The cost of total delay in the air: Air delay cost = c,(Air delay)

- The cost of total ground-holding delay: Ground delay cost = cs(Ground delay)

- The total cost is: Total delay cost = Ground delay cost + Air delay cost

When the program for the GUI is called, a window appears on the screen as shown in

Fig. 3-5 (see end of chapter). The top two buttons on the right hand side are,

respectively, ca and % The third button is for Q (maximum value is 10) and it is followed

by pq (q= 1,..., 10). These all can be edited by clicking on the button of choice and typing
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in the desired value. To load an input file, we go to the Load button and click on an input

file of choice. Plots of the original schedule of flights (demand) and the capacity scenarios

will appear on the graph of the window. To run the program, we click on the Run button.

When the solution is found, two more windows appear on the screen. See Fig. 3-6 and

Fig. 3-7 at the end of chapter. The new schedule of flights (optimal solution) appears on

the same graph, in the main window, as the demand and capacity. Fig. 3-6, one of the

windows that pops up, gives a table of the Air delay, Ground delay, Total delay, Air delay

cost, Ground delay cost, and Total delay cost. The other window, Fig. 3-7 shows Wqi, the

number of flights that will be delayed in the air, under this optimal solution, if capacity

scenario q were to actually occur.

Now, if we choose to edit the input, we do not have to go to the input file. It can all

be done in the main window. The costs, Q, and pi can be edited as described earlier, and

then the file is reloaded. To edit the demand or one of the capacity scenarios, we go to

the Edit button and click on what we wish to edit. Whatever is chosen appears alone on

the main graph. The mouse is used to make desired changes. For example, suppose we

wish to edit a capacity scenario which currently has a capacity of 12 for all time periods

and suppose we want the capacity for time periods 20-40 to be 10. We would then click

on the point (20,10) on the graph with the left button of the mouse, click on the point

(40,10) with the right button, and then click the middle button. We could continue in this

manner to do as many changes as desired. Under the Quit button, an (X,Y) coordinate is

shown. This tells us where on the graph is the cursor. After all changes are done, we go

back to the Edit button and click on Commit. This incorporates the change. We could

proceed in this way to edit the demand or other capacity scenarios. Afterwards, we click

on the Run button to rerun the program. The Clear button eliminates the optimal solution

from the main graph. The Clear All button clears everything from the main graph. If we

wish to print on a printer, we go to the Print button and then click on the window we wish

to print out. The Print to file button is used the same way, except we designate a file to

print the window to.

The GUI was developed in order to easily manipulate the input data and to view the

solution to the linear program in an easy to read manner.
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Fig. 3-5 Main Gui Window
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Fig. 3-6: Table of Delays and Costs in GUI
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Chapter 4

Sensitivity Analysis and Results

The purpose of this chapter is to analyze the performance of the algorithm and to

examine how it can be utilized in practice. This chapter is divided into five sections. The

two cases of uncertainty in time and uncertainty in capacity are evaluated in each part.

The first section takes a time period of capacity reduction and shifts it throughout the day.

This is done in order to see how the effect of capacity reduction at an airport varies,

depending on the time of day. We do this shift for three airports, each with different

demands and levels of variability in their landing capacity. The second section investigates

the sensitivity of the ground-holding algorithm to the number of capacity scenarios used,

in terms of results and running time. We look at three different probability distributions

for the capacity scenarios. In the third section, we analyze the sensitivity of the algorithm

to T, the number of intervals the time horizon is divided into. We want to see the impact

of T on the results and running time. The fourth section shows how the cost ratio of air

delay to ground delay can influence the ground-holding policy. Finally in the fifth section,

we compare our ground-holding algorithm to other scheduling stategies, in terms of

amount of delay and cost.

4.1 Shift Period of Capacity Reduction Throughout the Day

In this section, we look at the two cases of capacity reduction, uncertainty in time and

uncertainty in capacity, as they are applied to three airports. For each case, we will take a

time period of capacity reduction and shift it throughout the day. This is done in order to

see how the effect of capacity reduction on ground-holding is different at various times of

the day. We also compare the ground-holding algorithm to the passive strategy of no
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ground-holding Onecriterionweusefor comparison,is thetotal costof delays.We also

examinethetypeof airportwhichmightbenefitthemostfrom thealgorithm. An airport

that hasagreatdealof variabilityin its landingcapacitymaybenefitmorefrom the

algorithmthananairportwith a lessvolatilecapacity.Thismaybebecausewhenthereis

lessuncertaintyin thecapacity,theneedfor agoodprobabilisticmodelis not asgreat.

This is thereasonfor selectingthreedifferentairportsto findout what kind of demandand

capacityprofilesmaybenefitmorefrom thealgorithm.

ThethreeairportsweexamineareLogan,LaGuardia,andSanFrancisco.We study

thedemandprofile for arrivalsat eachof theseairportsfrom January13,1993. This

appearsto beatypicaldayfor arrivalsat eachairport.Thesedemandsweretakenfrom the

OfficialAirlineGuide(OAG)andareshowninFig. 4-1a,4-1band4-1c (seenextpage).

Thetimehorizonin thesefiguresis 24hours.Thenumberof flightslandingbetween

, midnightand7 AM is smallandthereforewill bedisregardedfor thepurposeof this study.

This isbasedontheassumptionthattheseflightswill havenodifficulty in landing.The

timehorizonfor this studywill thenbecome17hours(7:01AM to 12:00AM(midnight)).

Wewill dividethis 17hourhorizoninto 17timewindows,thefirst being8 ,_dVI and the

last one 12 AM. The 8 AM window includes all flights that are scheduled to land in the

interval, 7:01 AM - 8:00 AM; 9 AM includes all flights scheduled between 8:01 AM -

9:00 AM; and so on. Each of these one hour time windows is further broken into four 15

minute time periods and T, the total number of time periods is calculated to be 68 (17 x 4

= 68). Time period 1 represents the time interval 7:01 - 7:15 AM, time period 2

represents 7:16 - 7:30 AM, and so on until time period 68, which represents 11:46 PM -

12:00 AM.
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Fig. 4-1a: Profileof Dail),Demand for Landing Operations at Logan _

Demand at Logan

60

__ 5o
E 4O

3O

i 2o
_E lo

z 0

1 3 5 7 9 11 13 15 17 19 21 23

Time of Day (Hr.)

drport

Fig. 4-1 b: Profile of Daily Demand for Landing Operations at LaGuardia Airport
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Fig. 4-1 c: Profile of Daily Demand for Landing Operations at San Francisco Airport
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Depending on weather, landing procedures at an airport may be classified into four

separate categories. These four categories are VFR1, VFR2, IFR1 and IFR2 and

correspond to different levels of visibility and cloud ceiling. VFR and IFR stand for

Visual and Instrument Flight Rules, respectively. When visibility and cloud ceiling are

low, IFR conditions prevail, instrument approaches take place at the airport and landing

intervals between aircraft are greater, typically making capacity lower than what it is under

VFR. VFR and IFR are each split into two levels. VFR1 has the highest landing capacity,

followed by VFR2, which is marginal VFR. Next is IFR1, followed by IFR2, which is low

IFR.

Logan may operate under any of these four categories. At LaGuardia and San

Francisco, three categories are identified: VFR, VFR/IFR, and IFR. The landing

capacities at each airport are shown in Tables 4-1a, 4-1b and 4-1c. The number of arrivals

that can land in an hour is converted to the number that can land in a 15 minute period and

is rounded to an integer value. These values are based on the Engineered Performance

Standards (EPS) and were obtained through the Draper Laboratory. The EPS numbers

give capacity at airports according to Airport and Runway Configuration. It should be

noted that these capacity values are approximate. This is not significant for the purpose of

this experiment because we are interested in comparing airports with different levels of

variability in their capacity profiles. The values used here serve this purpose.

Table 4-1 a: Levels of Capacity at Logan

Weather Category Arrivals/hr. Arrivals/15 minutes

VFR 1 60 15

VFR2 45 11

IFR1 36 9

IFR2 30 7
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Table 4- lb: Levels of Capacity at LaGuardia

Weather Category Arrivals/hr. Arrivals/15 minutes

VFR 39 10

VFR/IFR 36 9

IFR 33 8

Table 4-1 c: Levels of Capacity at San Francisco

Weather Category Arrivals/hr. Arrivals/15 minutes

VFR 53 13

VFR/IFR 41 10

IFR 26

We now define the cost of air and ground delays. If the cost of air delays is much

greater than the cost of ground delays, then all delays will be ground-holding ones. If the

cost of air delays is lower than that of ground delays, then all delays will be in the air. In

practice, the cost of air delay is greater than that of ground delay. For the purpose of this

study we use a ratio of air delay cost to ground delay cost of 5:3. This is a reasonably

realistic ratio and it leads to strategies that do not have all delays in the air or all delays on

the ground. To get an idea of the dollar value of these costs, we make the cost of air

delays per time period, C,, equal to $1000/hr. and the cost of ground-holding per period,

C_, equal to $600/hr. Dividing the hour into four 15 minute periods, these costs become

$250/15 min. and $150/15 min. periods. We use these costs for all examples in this study.

We shall now describe the example used in this section for case 1, uncertainty in time.

Assume that a landing capacity reduction will occur at some time during the day and will

last 2 hours. The capacity is at maximum during the rest of the day, except for this two-

hour reduction, when capacity drops to its minimum value. For Logan, maximum is 15
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arrivals/15min.andminimumis7 arrivals/15min.;for LaGuardia,maximumis 10

arrivals/15min.andminimumis 8 arrivals/15min.;andfor SanFrancisco,maximumis 13

arrivals/15min.andminimumis 7 arrivals/15rain. Thiscapacityreductioncanbeginat 3

possibletimes,eachtimeequallylikely. We startthisexamplewith thereduction

occurringsometimeatthebeginningof thedayand"shill" thereductionthroughtheday,

to finishwith thereductionoccurringattheendof theday. We obtainatotal of 14

possiblecases.Thefirst shiftmeansthereductioncouldstartat period1(7:01-7:15AM),

5 (8:01-8:15AM), or 9 (9:01-9:15AM) andwould respectively,endat periods8 (8:46-

9:00AM), 12(9:46-10:00AM), or 17 (10:46-11:00AM). SeeFig.4-2.

Fig. 4-2: Shift 1 for Case1,Uncertaintyin Time
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In Fig. 4-2, we can see that the reduction for shift 1 will last 2 hours and will begin at

period 1, 5, or 9. In the second shift, the reduction could begin at period 5, 9, or 13 and

will last 2 hours. See Fig. 4-3.
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Fig. 4-3: Shift 2 for Case 1, Uncertainty in Time
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We then "shift" the reduction across the entire day to obtain 14 shifts. See Fig. 4-4.

Fig. 4-4: "Shift" Reduction Throughout Day for Case 1
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We do these 14 shifts for each of the three airports. The results can be seen in Table 4-

2. The format of the table is as follows. There are 14 columns, each representing one of

the 14 shifts. The header of the column indicates in which interval the reduction will

occur. The top third of the table gives the results for Logan, the middle portion gives
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LaGuardia's results, and the bottom third gives San Francisco's. All delays are given in

hours and costs in dollars. For each airport, there are ten rows of values. The first three

rows show the amount of expected air, ground, and total delay, respectively. The next

three rows show their respective costs. The two rows after that give the amount of air

delay, and associated cost, that would occur if a passive strategy, rather than the ground-

holding algorithm, was used. A passive strategy means all flights take off according to

schedule and all delays will be airborne delays. The last two rows show the ratio of the

algorithm to the passive strategy, for total delay and total cost. Since the passive strategy

gives the minimum amount of delay, we can see, percentage-wise, how much over the

minimum amount of delay we are, when we use the algorithm. Even though the amount

of total delay, using the algorithm, is more than the minimum possible, the cost is always

less than or equal to that under a passive strategy.
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In Table 4-2, we can see for Logan, that the amount of delay and cost peaks in the

afternoon. When we look at the ratio of the ground-holding algorithm to the passive

strategy, we can see the total cost of ground-holding if the capacity reduction takes place

in the afternoon is 10-20% less than that under a passive strategy. For LaGuardia, delays

occur in only five shifts, those in the afternoon and early evening, and are quite small.

Thus, the total cost under a ground-holding strategy is not much less than that under a

passive strategy. (This also suggests that the capacity and/or demand levels we have used

for LaGuardia in this experiment may be too high and low, respectively.) San Francisco

appears to have a more erratic pattern of delays throughout the day. Most delays occur in

the morning, then lessen noticeably in the early afternoon, increase again in the early

evening, and taper offtoward the end of the day. When using the ground-holding

algorithm, higher savings in cost are associated with periods of larger amounts of delay.

In Fig. 4-5a, 4-5b, and 4-5c, we can see, for each of the airports, how much of the total

delay is air delay and how much is ground delay and how this varies across the 14 shifts.

Fig. 4-5a: Case 1 Air and Ground Delay at Logan Airport
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Fig. 4-5b: Case 1 Air and Ground Delay at LaGuardia Airport
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Fig. 4-5c: Case 1: Air and Ground Delay at San Francisco Airport
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As seen in the above figures, there is a greater amount of ground delay than air delay

whenever there is a large amount of total delay. This agrees with our intuition. When

there is a small amount of delay, this delay will be air delay so that the system is not

underused, meaning available landing opportunities are not wasted.

Combining the results of Table 4-2 and Figs. 4-5, we can conclude that the ground-

holding strategy is always cheaper than the passive strategy. Time periods of high delay

assign more of the delays as ground delays rather than air delays. And these times of high
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delayrepresenthighersavingsincostwhencomparingthealgorithmto thatof thepassive

strategy.

We now describetheexampleusedfor case2, uncertaintyin capacity.Theexampleis

slightlydifferent,thoughtheconceptof 14shiftsstill exists. Thecapacityreductionwill

lastfour hoursandthestart(andend)timeof thisreductionis knownwith certainty,but

theexactamountof reductionisunknown.Capacityoutsidethis intervalof reductionwill

beat maximum.For Logan,therearefour possiblecapacityvaluesduringthis interval,

eachequallyprobable.Theyare:15arrivals/15min., 11arrivals/15min.,9 arrivals/15

min.,or 7arrivals/15min. LaGuardiaandSanFranciscohavethreepossiblecapacity

valuesduringtheperiodof reduction,eachequallylikely. For LaGuardia,thesevaluesare

10arrivals/15min.,9 arrivals/15min.or 8 arrivals/15min.andfor SanFrancisco,theyare

13arrivals/15min., 10arrivals/15min.,or 6 arrivals/15min. As for case1,we startthe

examplewith thereductionoccurringin thebeginningof thedayandshift it throughout

the day,to obtainatotal of 14shifts. This means the first shift will occur during periods

1-16 (7:01-11:00 AM) where capacity may be reduced. See Fig. 4-6 for an example of

the first shift for San Francisco.

Fig. 4-6: Shift 1 for Case 2, Uncertainty in Capacity for San Francisco
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For San Francisco, under shift 1, capacity during periods 1-16 will be 13, 10, or 6. During

the second shift, capacity will again be reduced, with equal likelihood to 13, 10, or 6 for

periods 5-20. We continue this way through the day. See Fig. 4-7.

Fig. 4-7: Shift Reduction Through the Day for Case 2 for San Francisco
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The results for case 2 can be seen in Table 4-3. It is set up in the same manner as

Table 4-2, the table of results for case 1.
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The pattern of the amount of delay across the day is similar to case 1, but it appears

that there is more air delay than ground delay assigned for case 2. The cost savings are

therefore fewer. This can be visually seen in Figs. 4-8a, 4-8b, and 4-8c below.

Fig. 4-8a: Case 2: Air and Ground Delay at Logan Airport
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Fig. 4-8b: Case 2: Air and Ground Delay at LaGuardia Airport
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Fig. 4-8c: Case 2: Air and Ground Delay at San Francisco Airport
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Table 4-3 and Figs. 4-8 seem to indicate that the cost savings of a ground-holding

strategy for case 2 are less than that for case 1. One reason for this may be that for case 1,

uncertainty in time, the capacity is definitely reduced to a minimum for two hours.

Whereas for case 2, the capacity may or may not be reduced. The probability that

capacity will be reduced to a minimum and the probability that capacity will stay at

maximum is the same. The ground-holding algorithm will take this into account when

assigning delays.

The examples done in this section show that when landing capacity does not vary

much, in terms of maximum versus minimum capacity, ground-holding is not utilized as

much. LaGuardia is an example of this. When there is a bigger discrepancy between the

maximum and minimum capacity, then during times of high demand, there will be a great

deal of ground-holding performed. This will represent more cost-savings, in comparison

to a passive strategy. Logan and San Francisco are examples of this. At these two

airports, ground-holding was not necessary for the whole time horizon; it was only used in

times of peak demand. We observe that at airports with situations where there is a high

probability of demand exceeding available landing capacity, there is more ground-holding

performed and this will represent higher savings.
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4.2 Sensitivity to Number of Scenarios

The purpose of this section is to see how sensitive our algorithm is to Q, the number of

probabilistic capacity scenarios used. We are interested in this analysis because Richetta

used a Q equal to 3 or 4 in his tests. He believed a small value of Q was important for

obtaining fast solutions and that it was consistent with current weather forecasting

technology. Today, the kind of weather that will occur in a certain area can be predicted

relatively accurately, but its severity and exact timing cannot. We wish to incorporate this

uncertainty into a model and it is important to approximate the true probability

distribution, associated with the timing and severity of a weather condition, as closely as

possible. This means Q may have to be larger than 3 or 4. We wish to see how varying Q

affects the results and solution time of the ground-holding problem.

First, we explain what we mean when we say Q can take on different values. In reality,

time is continuous, but in our study, we divide the time horizon into time periods. Ifa

weather condition, which will reduce landing capacity, is expected to arrive any time, with

equal probability, in a 1 hour period, then in reality, there are infinite points of time in

which this weather front may arrive. But if we divide the time horizon into 15 minute

periods, then the weather front can arrive in only 4 possible time intervals. Each of these

4 intervals would represent a probabilistic capacity scenario and to represent the true

probability distribution, Q would equal 4. Q is a discrete integer value because the time

horizon is now comprised of time periods and the total number of time periods is an

integer number. This situation would be an example of case 1, uncertainty in time.

For case 2, uncertainty in capacity, the time interval length will also affect how large Q

can be, in order to accurately model the true probability distribution. For example, using

the Logan capacity profile, the maximum number of flights that can land in an hour is 60

and the minimum is 30. If the time periods are 15 minutes long, then the capacity

becomes the number of flights that can land in a 15 minute period. The maximum would

then be 15 and the minimum around 7. If a weather forecast predicts capacity has an

equally likely chance of being between maximum and minimum capacity for a certain

duration, then (after conversion of the time horizon into 15 minute periods) there are 9
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probabilistic capacity scenarios. The capacities between 7 and 15 each represent a

scenario and Q equals 9. Again as in case 1, the number of possible capacity values is an

integer because the possible capacity values are integer and finite.

In both cases, by discretizing the time horizon, we are changing the probability density

function from continuous to discrete. When describing this probability distribution, Q

should not be much larger than 10. If uncertainty lies in the arrival time of a weather

front, current weather forecasting technology can usually pinpoint this time to within a

couple of hours. Thus, if we use Logan as an example and use 15 minute time periods,

then a capacity reduction that will begin sometime in a two hour period would mean a Q

equal to 8. And as shown above for uncertainty in capacity, Q for Logan will not be

larger than 9. This means, generally, Q should be less than or equal to 10. In this section,

we want to see what happens when we try to approximate the probability distribution with

fewer capacity scenarios, for problems involving Q equal to 9. And because solution time

was a consideration in initially using a small Q, we want to see how much longer it takes

to solve the problem for a larger Q

The examples we do in this section use the Logan demand and capacity values that are

described in the previous section. The time periods are 15 minutes long and the total

number of periods is 68. For case 1, uncertainty in time, let us say that there will be a two

hour storm that will reduce capacity from the maximum of 15 arrivals/15 min. to the

minimum of 7 arrivals/15 min. In order to obtain a Q equal to 9, we will say that this

storm will arrive sometime between 11:01 AM and 1:15 PM. Thus, the storm may arrive

during one of the following nine periods: period 17 (11:01-11:15AM), period 18 (11:16-

11:30AM), period 19 (11:31-11:45AM), period 20 (11:46AM-12:00PM), period 21

(12:01-12:15PM), period 22 (12:16-12:30PM), period 23 (12:31-12:45PM), period 24

(12:46-1:00PM), or period 25 (1:01-1:15PM). Each one of the above nine periods

represents a probabilistic capacity scenario.

For case 2, uncertainty in capacity, we will say that there is a four hour storm which

will begin at period 29 (2:01-2:15PM) and end at period 44 (5:46-6:00PM). During this

time, capacity will be one of the following values (in arrivals/15 min.): 15, 14, 13, 12, 11,

10, 9, 8, or 7. When the storm occurs, each of the above values has a probability of being
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the capacity at the airport for that four hour interval. Thus, each possible capacity

represents a probabilistic capacity scenario and like case 1, Q equals 9.

Using 15 minute periods, the maximum number of possible probabilistic capacity

scenarios for both cases is 9. This means an accurate model of the true probability

distribution would have 9 capacity scenarios, each with an associated probability. The

first experiment we run in this section is to vary Q from 3 to 9, for both case 1 and 2, and

then examine the results.

When Q is less than 9, only some of the original 9 scenarios are chosen. For example,

in case 1, if we were to use Q equal to 3, then we might say the storm will arrive at period

17, 21, or 25. Table 4-4 shows what Q scenarios were chosen from the original nine when

Q scenarios are used to solve the problem. This table is used for both case 1 and case 2.

What we have done is label the capacity scenarios from 1 to 9. For case 1, scenario 1

refers to period 17, scenario 2 to period 18,..., and scenario 9 to period 25. For case 2,

scenario 1 refers to capacity 15, scenario 2 to capacity 14,..., and scenario 9 to capacity 7.

The left column shows what Q is and then each row shows what Q scenarios have been

chosen to use in solving the problem. A dash in the table means that particular scenario

was not chosen. For example, Q equal to 5 means we are using 5 probabilistic capacity

scenarios in solving the problem and they are scenarios 1, 3, 5, 7, and 9. For case 1, this

means choosing as the possible arrival time, periods 17, 19, 21, 23, and 25 and for case 2,

the possible landing capacities during the storm would be 15, 13, 11, 9, and 7.

Table 4-4: Which Q Scenarios are Chosen for Each Q

O Scenarios Chosen

9 1 2 3 4 5 6 7 8 9

8 1 2 3 4 6 7 8 9

7 1 2 4 5 6 8 9

6 1 2 4 6 8 9

5 1 - 3 5 7 9

4 1 - 4 6 9

3 1 - 5 9
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For each case, we ran the example using three different probability distributions:

uniform, triangular, and left-tail. For the uniform distribution, all scenarios had equal

probability of occurring. If Q scenarios were used, then each scenario had a probability of

1/Q associated with it. For the triangular distribution, to calculate the probabilities, we

used an isosceles triangle with base 1 and height 2 units. We divided the base into Q equal

parts, each with length 1/Q. At every division, we vertically "sliced" the triangle to obtain

Q slices and then found the area of each slice. The area &each of the Q slices was the

probability associated with each of the Q scenarios. See Fig. 4-9.

Fig. 4-9: Calculation &Probabilities for Triangular Distribution
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Table 4-5 shows the triangular probability distributions. The left column indicates the

number of scenarios used. Each row shows which scenarios are used and their associated

probabilities. P(i) is the probability of scenario i.
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Table 4-5: Triangular Probability Distributions

Q P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9)

9 2/81 6/81 10/81 14/81 17/81 14/81 10/81 6/81 2/81

8 1/32 3/32 5/32 7/32 0 7/32 5/32 3/32 1/32

7 2/49 6/49 0 10/49 13/49 10/49 0 6/49 2/49

6 1/18 3/18 0 5/18 0 5/18 0 3/18 1/18

5 2/25 0 6/25 0 9/25 0 6/25 0 2/25

4 1/8 0 0 3/8 0 3/8 0 0 1/8

3 2/9 0 0 0 5/9 0 0 0 2/9

For the left-tail distribution, we used a right angle triangle of base 1 and height 2 and

calculated the probabilities of the scenarios in the same manner as the triangular

distribution. Table 4-6 shows the probabilities of the left-tail distribution for the various

values of Q. It is set up the same way as Table 4-5.

Table 4-6: Left-tail Probability Distributions

Q P(1)

1/81

1/64

1/49

1/36

1/25

1/16

1/9

P(2)

3/81

3/64

3/49

3/36

P(3)

5/81

5/64

3/25

0

0

P(4)

7/81

7/64

5/49

5/36

0

3/16

0

P(5)

9/81

0

7/49

0

5/25

0

3/9

P(6)

11/81

9/64

9/49

7/36

5/16

P(7)

13/81

11/64

7/25

P(8)

15/81

13/64

11/49

9/36

P(9)

17/81

15/64

13/49

11/36

9/25

7/16

5/9

Figs. 4-10a, 4-10b, and 4-10c show, for case 1, the amount of air and ground delay for

the various values of Q for the three probability distributions: uniform, triangular, and left-

tail. Case 2 results are shown in Figs. 4-1 la, 4-1 lb, and 4-1 lc. These figures show that

ground and air delay assignments can vary significantly for the same example, depending

on the number of probabilistic scenarios chosen to approximate the real distribution.

Therefore, it is very important to select carefully the number of scenarios.
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Fig. 4-10a: Case 1: Air and Ground Delay for Various Q for the Uniform Distribution
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Fig, 4-10b: Case 1 Air and Ground Delay for Various Q for the Triangular Distribution
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Fig. 4-10c: Case 1: Air and Ground Delay for Various Q for the Left-tail Distribution
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Fig. 4-1 la: Case 2: Air and Ground Delay for Various Q for the Uniform Distribution
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Fig. 4-1 lb: Case 2: Air and Ground Delay for Various Q for the Triangular Distribution
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Fig. 4-1 lc: Case 2: Air and Ground Delay for Various Q for the Left-tail Distribution
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Another problem that arises when using less than 9 scenarios is how to choose which

scenarios to use. If we use Q equal to 3, then there are four different logical ways of

choosing 3 scenarios from the original 9. Each of these choices may result in different

solutions. These four possible combinations are:

1.) Take the two outer scenarios and the middle one. (This is how we chose Q equal

to 3 for the previous experiment in this section.)

Scenarios chosen: 1, 5, 9

2.) Divide the nine scenarios into three intervals. Take the middle scenario of each

interval.

Scenarios chosen: 2, 5, 8

3.) Divide the nine scenarios into three intervals. Take the lettmost scenario of each

interval.

Scenarios chosen: 1, 4, 7

4.) Divide the nine scenarios into three intervals. Take the rightmost scenario of each

interval.

Scenarios chosen: 3, 6, 9

We will run this problem for case 1 and case 2, using each of the three probability

distributions: uniform, triangular, and lett-tail. The probability distribution associated with

the three scenarios is the same as described for the previous example in this section. The

results of these runs are shown in Fig. 4-12a, 4-12b, and 4-12c, for case 1, and in Figs. 4-

13a, 4-13b, and 4-13c, for case 2. For each combination, we show the amount of air and

ground delay. It can be seen that, depending on which scenarios are chosen, the amount

of air and ground delay can vary.
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Fig. 4-12a: Case 1 Air and Ground Delay for Q=3 Combinations for Uniform Distr.
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Fig. 4-12b: Case 1: Air and Ground Delay for Q=3 Combinations for Triangular Distr.
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Fig. 4-12c: Case 1' Air and Ground Delay for Q=3 Combinations for Le_-tail Distr.
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Fig. 4-13a: Case 2: Air and Ground Delay for Q=3 Combinations for Uniform Distr.
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Fig. 4-13b: Case 2: Air and Ground Delay for Q=3 Combinations for Triangular Distr.
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Fig. 4-13c: Case 2: Air and Ground Delay for Q=3 Combinations for Let_-Tail Distr.
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The above two experiments show how sensitive the ground-holding algorithm is to Q,

the number of scenarios used. It is difficult to decide how many scenarios and which to

use when we try to approximate the true distribution with fewer scenarios. It appears that

it would be best to use the Q that is necessary to describe the true probability distribution.

The question then is whether the time to solve the problem will be too long. Table 4-7

shows, for different values of Q, the time to generate the matrix, the time to solve the

problem, and then the total time, which is equal to generation time plus solution time.

Times are shown in seconds. Under each value of Q, the matrix size, [number of

constraints] x [number of variables] is shown. Though we showed no examples with Q

equal to 10, we ran some in order to get computation times for comparison.

Table 4-7: Generation, Solution, Total Times for Various Values of Q

Mat Size

Q=3 Q=4 Q=5 Q=6 Q=7 Q=8

278x2825 348x2962 418x3099 488x3236 558x3373 628x3510

Q=9

698x3647

Q=10

768x3784

2.5Generate 0.7 0.9 1.2 1.4 1.6 1.9 2.2

Solve 3.0 3.9 5.1 6.3 7.4 8.7 10.0 11.8

Total 3.7 4.8 6.3 7.7 9.0 10.6 12.2 14.3

Table 4-7 shows times for a T equal to 68, which represents a 17 hour day divided into

15 minute periods. For Q equal to 3, the computation time is about 4 seconds and for Q

equal to 10, the time is about 14 seconds. Using Q equal to 10, more than triples the time,

compared to Q equal to 3; but the time is still relatively short. As we mentioned in the

beginning of this section, Q should, in practice, not get much larger than 10. Therefore, if

10 is the number of scenarios needed to describe the probability distribution, then that is

how many scenarios should be used to obtain accurate results. In terms of the

computation time required, this is a realistic and practical approach.
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4.3 Sensitivity to Number of Time Intervals

The purpose of this section is to examine the sensitivity of the algorithm to T, the total

number of time periods that the time horizon is divided into. This will help us in

determining how long the length of each time period should be (i.e., 10 minute periods vs.

30 minute periods) in order to get a good solution. The smaller the time period is, the

larger T will be. We want to see how the time to solve the problem increases as T

increases. The computation time is dependent on the matrix size, [number of constraints]

x [number of variables]. As we saw in Chapter 3, the matrix size is more dependent on T

than Q. So even though we observed in the previous section that the computation time is

still relatively small in relation to an increase in Q, this may not hold true for T. A large T

may represent a large solution time.

The example solved in this section is similar to the one in the first section of this

chapter, except we only look at Logan airport and Q equals 3 for both case 1 and case 2.

We take an interval of capacity reduction and shift it across the day, which is 17 hours

long, to obtain 14 shifts. For case 1, uncertainty in time, there will be a two-hour capacity

reduction where capacity will drop from 60 arrivals/hr, to 30 arrivals/hr. This reduction

could begin at 3 possible times, each an hour apart, and these different start times

represent the 3 capacity scenarios. For case 2, uncertainty in capacity, there is a four-hour

capacity reduction, where capacity for these four hours could be 60 arrivals/hr., 36

arrivals/hr., or 30 arrivals/hr. These 3 capacities each represent the three probabilisfic

capacity scenarios.

For case 1 and case 2, we do this example of 14 shifts using four different values of T,

and then compare the amount of air and ground delay for each T. The four values of T

represent time periods of length l0 minutes, 15 minutes, 20 minutes, and 30 minutes, and

are, respectively, 102 (T=17"6), 68 (T=17"4), 51 (T=17'3), and 34 (T=17"2). Because

Q equals 3 for both cases, we use only three weather categories for determining landing

capacity. Since we are comparing across different time period lengths, the capacity must
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be consistent for the different values ofT. Table 4-8 shows the weather category and

corresponding capacity used for each time period length. The number of arrivals that can

land in an hour are converted into how many can land in each time period.

Table 4-8: Capacity Under Various Time Period Lengths

Weather # Arrivals/hour # Arrivals/30 # Arrivals/20 # Arrivals/15 # Arrivals/10

Category minutes minutes minutes minutes

VFR1 60 30 20 15 10

IFRI 36 18 12 9 6

IFR2 30 15 10 7.5 5

The number of arrivals per 15 minutes under weather category IFR2 is 7.5. Because

all capacity values are restricted to be integer and we want to be consistent, we modeled

7.5 in the following manner. We alternated 7 and 8 for as many periods as the capacity

was at 7.5. For example, if capacity was 7.5 for 4 time periods, then the capacity was set

to 7, 8, 7, and 8 for the 4 periods.

The results from this example for case 1 and case 2 can be seen, respectively, in Table

4-9 and Table 4-10. The format of the tables is as follows. The first row indicates which

shift or part of the day the reduction occurs in. Under each column, the air, ground, and

total delay (in hrs.) is shown for the 10, 15, 20, and 30 minute periods. For each shift, we

can see that the delay times for the different time period lengths are very similar. There is

not much discrepancy in the delay times across the various values of T.
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In order to visualize what is happening in Tables 4-9 and 4-10, we plot the air and

ground delays for cases 1 and 2. Figs. 4-14a and 4-14b show, respectively, the air and

ground delay for case 1, and Figs. 4-15a and 4-15b show the air and ground delay for case

2. For each shift, the delay for the 4 different time period lengths is charted. In each shift,

the first vertical bar corresponds to the 10 minute time periods, the second to the 15

minute periods, the third to the 20 minute periods, and the fourth to the 30 minute

periods. These graphs show that for both case 1 and case 2, the air and ground delays for

the different values of T differ by only a small amount.

Fig. 4-14a: Case 1 Air Delay for Various Values ofT
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Fig. 4-14b: Case 1: Ground Delay for Various Values of T
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Fig. 4-15a: Case 2: Air Delay for Various Values ofT
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Fig. 4-15b: Case 2: Ground Delay for Various Values oft
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The above graphs show that the algorithm, in terms of the amount of air and ground

delay, is not that sensitive to different values of T. Therefore, it is important to see the

computation time associated with each T. Table 4-11 shows in the first row the matrix

size of the problem associated with each value ofT. The next three rows show, in

seconds, the time to generate the matrix, the time to solve the problem, and the total time

(sum of generation and solution time) for each value ofT.
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Table 4-11: Computation Time for Various Values of T

30 min., T=34 20 min., T=51 15 min., T=68 10 min., T=I02

Matrix Size [142] x 18361 I210] x [1686] 12781 x 128251 1414] x [59701

Generation Time .01 .3 .7 2.1

Solution Time .6 1.5 3.0 9.3

Total time .61 1.8 3.7 11.4

The above table shows that for T equal to 54 (30 minute periods), the problem is solved

in less than a second. For T equal to 102 (10 minute periods) the computation time is a

little over 11 seconds. These times were obtained for a Q equal to 3 and a time horizon of

17 hours. As was observed in the previous section, a larger Q will mean an increase in the

computation time, but a larger Q may be more realistic. The time horizon of 17 hours

seems reasonable, though. Thus, taking into account that Q may be larger than 3, dividing

the time horizon into 15 minute periods appears to be an approach that will give good

solutions quickly (as we saw in the previous section). However, because the algorithm

does not appear to be that sensitive to T and can still be solved in a relatively short time, it

seems that the decision on how to discretize the time horizon can be a flexible one. If an

airport has a flat demand profile, then larger time period lengths may be used because the

demand is more uniform. An airport with a demand profile that is more volatile and has

many peaks and dips may wish to use smaller time period lengths.
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4.4 Sensitivity to Cost Ratio

The purpose of this section is to show that the cost ratio of air delay per hour to

ground delay per hour can influence what kind of ground-holding policy will be used. A

high ratio of air delay cost to ground delay cost will result in an emphasis on ground-

holding. This is because the cost of air delay is much higher than that of ground delay and

hence, most delays will be ground ones. When air and ground delay costs are close in

value, then more delays will be absorbed in the air because there is no longer any great

savings associated with ground delays.

In this section, we use the same example used in the second section of this chapter.

The demand and capacity profiles from Logan are used. Q equals 3 and T equals 68. For

case 1, uncertainty in time, a two-hour storm could arrive at period 17, 21, or 25 and

capacity will be reduced from 15 arrivals/15 min. to 7 arrivals/15 min. for these 2 hours.

For case 2, uncertainty in capacity, a 4 hour storm is arriving at period 29 and during this

time, capacity could be 15, 11, or 7 arrivals/15 min. We show three examples of each

case, using different probability distributions. The three distributions used are: .333, .333,

.333; .2, .3, .5; and. 1,. 1, .8, corresponding to the high, medium, and low capacity,

respectively. For each distribution and each case, we find delays and costs for five cost

ratios. These ratios are of the cost of air delay/hr, to the cost of ground delay/hr, and are

as follows: $1000/hr : $200/hr. (5:1); $1000/hr. : $400/hr. (5:2); $1000/hr. : $600/hr.

(5:3); $1000/hr. : $800/hr. (5:4); and $1000/hr. : $1000/hr. (5:5). The results from these

runs can be seen in Tables 4-12a, 4-12b, and 4-12c for case 1 and in Tables 4-13a, 4-13b,

and 4-13c for case 2. The top row indicates the ratio and in each column, the air delay,

ground delay, total delay and the associated costs of each are shown. Delays are in hours

and costs are in dollars.
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Table 4-12a: Case 1: Cost Ratio for Probability Distribution .333, .333, .333

5:1 5:2 5:3 5:4 5:5

Air Delay 7.99 hrs. 21.4 hrs. 21.4 hrs. 29.39 hrs. 30.89 hrs.

Ground Delay 53.75 hrs. 13.5 hrs. 13.5 hrs. 1.5 hrs. 0 hrs.

Total Delay 61.74 hrs. 34.9 hrs. 34.9 hrs. 30.89 hrs. 30.89 hrs

Air Cost $7,992 $21,395.25 $21,395.25 $29,387.25 $30,885.75

Ground Cost $10,750 $5,400 $8,100 $1,200 $0

Total Cost $18,742 $26,795.25 $29,495.25 $30,587.25 $30,885.75

Table 4-12b: Case 1 Cost Ratio for Probability Distribution .2, .3, .5

5:1 5:2 5:3 5:4

Air Delay 5.55 hrs.

Ground Delay 53.75 hrs.

Total Delay 59.30 hrs

Air Cost $5,550

Ground Cost $10,750

Total Cost $16,300

6.1 hrs.

51 hrs.

57.1 hrs.

$6,100

$2O,4OO

$26,5OO

5:5

25.73 hrs. 25.73 hrs. 33.93 hrs.

11.75 hrs. 11.75 hrs.

37.48 hrs. 37.48 hrs.

$25,725 $25,725

$7,050 $9,400

$32,775 $35,125

1.5 hrs.

35.43 hrs.

$33,925

$1,500

$35,425

Table 4-12c: Case 1: Cost Ratio for Probability Distribution. 1,. 1, .8

Air Delay

5:1

2.68 hrs.

5:2

3.03 hrs.

5:3

3.03 hrs.

5:4

6.43 hrs.

Ground Delay 51 hrs. 49.25 hrs. 49.25 hrs. 45 hrs.

Total Delay 53.68 hrs. 52.28 hrs. 52.28 hrs. 51.43 hrs.

Air Cost $2,675 $3,025 $3,025 $6,425

$19,700 $29,550

$32,575$22,725

Ground Cost $10,200

Total Cost $12,875

$36,000

$42,425

5:5

42.25 hrs.

1.5 hrs.

43.75 hrs.

$42,25O

$1,500

$43,750
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Table4-13a:Case2: CostRatiofor ProbabilityDistribution_333,.333,.333

5:1 5:2 5:3 5:4 5:5

AirDelay 0hrs. 91.82hrs. 91.82hrs. 117.13hrs. 117.13hrs.

GroundDelay 313.75 hrs. 38 hrs. 38 hrs. 0 hrs. 0 hrs.

Total Delay 313.75 hrs. 129.82 hrs. 129.82 hrs. 117.13 hrs. 117.13 hrs.

Air Cost $0 $91,824.75 $91,824.75 $117,132.75 $117,132.75

Ground Cost $62,750 $15,200 $22,800 $0 $0

Total Cost $62,750 $107,024.75 $114,624.75 $117,132.75 $117,132.75

Table 4-13b: Case 2: Cost Ratio for Probability Distribution .2,. 3,. 5

5:1

Air Delay 0 hrs.

Ground Delay 313.75 hrs.

Total Delay 313.75 hrs.

Air Cost $0

Ground Cost $62,750

Total Cost $62,750

5:2 5:3 5:4 5:5

0 hrs. 137.88 hrs. 142.28 hrs. 168.28 hrs.

313.75 hrs. 38 hrs. 32.5 hrs. 0 hrs.

313.75 hrs. 175.88 hrs. 174.78 hrs. 168.28 hrs.

$0 $137,875 $142,275 $168,275

$125,500 $22,800 $26,000 $0

$125,500 $160,675 $168,275 $168,275

Table 4-13c: Case 2: Cost Ratio for Probability Distribution. 1,. 1, .8

5:1 5:2 5:3 5:4

Air Delay 0 hrs. 0 hrs. 0 hrs. 4.2 hrs.

Ground Delay 313.75 hrs. 313.75 hrs. 313.75 hrs. 308.5 hrs.

5:5

254.8 hrs.

0 hrs.

Total Delay 313.75 hrs. 313.75 hrs. 313.75 hrs. 312.7 hrs. 254.8 hrs.

Air Cost $0 $0 $0 $4,200 $254,800

Ground Cost $62,750 $125,500 $188,250 $246,800 $0

Total Cost $62,750 $125,500 $188,250 $251,000 $254,800
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For both case 1 and case 2, the above tables show that when the cost of ground delay is

much cheaper than that of air delay, most of the delay will then be ground. But as the

ground delay cost approaches that of air delay, most of the delay becomes air delay

because ground-holding no longer represents high savings in cost. A solution with almost

all of the delay as air delay is very similar to the passive strategy, which assigns all delay as

air delay. The passive strategy gives the minimum amount of delay. That is why for each

distribution, the total delay decreases as the ratio goes from 5:1 to 5:5.

In both cases, the third capacity scenario represents the worst case. For case 1, the

third scenario represents a drop in capacity reduction during a higher demand period than

the first and second scenarios. For case 2, the third scenario has the lowest capacity

during the period of reduction. This means that as the probability of the third scenario

occurring increases, more weight is given to this scenario and if it occurs, there will be

more delay. As can be seen from the tables, the total delay is greater for probability

distribution. 1,. 1, .8 then for distribution .333, .333, .333. The only exception to this is for

case 1 and ratio 5:1. For this combination, the opposite occurs. This is because almost all

delay is ground delay for ratio 5:1 and when there is more uncertainty about which

particular scenario will occur, then there is a higher chance that available landing capacity

is not being utilized. But as the probability of the third scenario increases, this scenario

becomes the one that is most likely to occur and it is less likely that landing capacity is

being wasted. This is also why for probability distribution. 1,. 1, .8, there is not as much

discrepancy in total delay between ratio 5:1 and 5:5 as there is for distribution. 333,. 333,

.333. This last observation is true for both cases.

The results of this section show that the ratio of air to ground cost chosen can

influence the solution. The impact of this ratio on the solution can vary for different

probability distributions and different problems, but it is still an important factor in

determining the amount of ground-holding done. A high ratio of air to ground cost will

result in a great deal of ground-holding, whereas a low ratio of air to ground cost means

most of the delay will be air delay. It is important to keep this in mind when determining a

cost ratio to use in the ground-holding problem. The ratio chosen can influence what kind

of ground-holding policy will be used.
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4.5 Comparison to Other Strategies

In this section, we compare the simplified algorithm developed in this thesis (for

simplicity, we will call it the GHP algorithm) to three other strategies of air traffic flow

management for landings at an airport. The Passive strategy is one where flights depart

from the airports of origin on schedule and all delays are taken in the air. The Most Likely

strategy chooses the probabilistic capacity scenario with the highest probability as the only

capacity scenario and available capacity is then assigned on a FCFS basis, with all delays

being ground-holding delays. The Expected strategy comes up with one capacity scenario

by taking the expected value of the probabilistic capacity scenarios.

For the case of uncertainty in time, we use the same example as the second and fourth

section of this chapter. We are looking at Logan over a 17 hr. day that starts at 7:01 AM

and ends at midnight. We break the time horizon into 15 minute periods, to obtain a T

equal to 68. Capacity will be reduced from 60 arrivals/hr. (15 arrivals/15 min.) to 30

arrivals/hr. (7 arrivals/15 min.) for a length of two hours. This reduction could begin at

time period 17, 21, or 25. Each of these possible start times represents a capacity

scenario. We run this example twice, using a different probability distribution in each

case. The first run has a uniform distribution and the probabilities associated with each

scenario is 1/3. The second run assigns the probabilities .8,. 1, and. 1 to the capacity

scenarios with capacity reduction start time at periods 17, 21, and 25.

For the case of uncertainty in capacity, we also use the same example as described in

the second and fourth section of this chapter. We know that between periods 29-44,

capacity could be 15 arrivals/15 rain., 11 arrivals/15 rain., or 7 arrivals/15 min We do

two runs of this example, each with a different probability distribution. The two

distributions are (associated with 15, 11, and 7 arrivals/15 min., respectively): 1/3, 1/3, 1/3

and. 1,. 1,. 8.

Tables 4-14a and 4-14b show the delays and associated costs under the different

scheduling strategies for the two probability distributions for case 1. Case 2 results are

shown in Tables 4-15a and 4-15b. For the Most Likely strategy, under the probability

distribution of 1/3, 1/3, 1/3, each scenario has equal chance of being the most likely. We
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applytheMost Likely strategyfirst to scenario1,thento scenario2, andlastly,to

scenario3.

Table 4-14a: Case 1 Probability Distribution: 1/3, 1/3, 1/3
GHP Alg Passix--e Most Likely Most Likely

(scenario 1) (scenario 2)

Air Delay
Ground

Total Delay
Air Cost

Ground Cost

Total Cost

21.4 hrs. 30.89 hrs. 53.5 hrs. 24.67 hrs.

Most Likely

(scenario 3)
10.08 hrs.

Expected

30.75 hrs.

13.5 hrs. 0 hrs. 22.5 hrs. 21 hrs. 49.25 hrs. 25 hr.

34.9 hrs. 30.89 hrs. 76 hrs. 45.67 hrs. 59.33 hrs. 31 hrs.

$21,395.25 $30,885.75 $53,500 $24,670 $10,080 $30,750

$8,100 $0 $13,500 $12,600 $29,550 $150

$29,495.25 $30,885.75 $67,000 $32,270 $39,630 $30,900

Table 4-14b: Case 1: Probability Distribution: .8,. 1,. 1

GHP Alg. Passive Expected

Air Delay

Ground Delay

18.2 hrs.

8.5 hrs.

25.03 hrs.

0 hrs.

Most Likely

(profile 1)
16.05 hrs.

22.5 hrs.

17.83 hrs.

35.25 hrs.

Total Delay 26.7 hrs. 25.03 hrs. 76 hrs. 53.08 hrs.
Air Cost $18,200 $25,025 $16,050 $17,830

Ground Cost $5,100 $0 $13,500 $21,150

Total Cost $23,300 $25,025 $29,550 $38,980

Table 4-15a: Case 2: Probability Distribution: 1/3, 1/3, 1/3

GHP Alg. Passive Expected

Air Delay
Ground

91.82 hrs. 117.13 hrs.

Most Likely

(scenario 1)
117.25 hrs.

Most Likely

(scenario 2)
91.92 hrs.

Most Likely

(scenario 3)
0 hrs.

313.75 hrs.

91.92 hrs.

38 hrs.38 hrs. 0 hrs. 0 hrs. 38 hrs.

Total Delay 129.82 hrs. 117.13 hrs. 117.25 hrs. 129.92 hrs. 313.75 hrs. 129.92 hrs.
Air Cost $91,824 $117,133 $117,250 $91,920 $0 $91,920

Ground Cost $22,800 $0 $0 $22,800 $188,250 $22,800

$114,624Total Cost $117,250 $188,250$117,133 $114,720 $114,720

Table 4-15b: Case 2:Probability Distribution:. 1,. 1, .8

Air Delay

Ground Delay

Total Delay

GHP Alg.

0 hrs.

313.75 hrs.

313.75 hrs.

Passive

254.8 hrs.

0 hrs.

254.8 hrs.

Most Likely

(scenario 3)
0 hrs.

313.75 hrs.

313.75 hrs.

Expected

266.4 hrs.

230.5 hrs.

496.9 hrs.

Air Cost $0 $254,800 $0 $266,400

Ground Cost $188,250 $0 $188,250 $138,300

Toml Cost $188,250 $254,800 $188,250 $404,700
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The above tables show that for these particular examples, the ground-holding

algorithm developed in this thesis always gives the lowest total cost and a total delay that

is close to the minimum possible. The other strategies are much more erratic. Sometimes,

they give solutions with costs that are close to the lowest and other times, their solutions

have the highest costs. The performance of these scheduling strategies depend on the

demand and capacity profiles used and the associated probability distribution. The GHP

algorithm is more consistent and performs better under different situations.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

In this section, we summarize the conclusions drawn in this thesis.

The cost of air delay is, in practice, always higher than the cost of ground delay.

Whenever demand exceeds capacity, a ground-holding policy may thus be beneficial, in

terms of cost savings. Times of high demand in relation to capacity will use more ground-

holding and will thus, have higher savings. An airport that does not have much variability

in its capacity nor a high demand may not need a ground-holding algorithm. Also, some

airports do not have persistent high demand all day. Ground-holding may then only be

needed during these peak travel times.

Our algorithm is sensitive to Q, the number ofprobabilistic capacity scenarios used. It

is important to model the true probability distribution as closely as possible in order to

obtain good results. This may mean that Q could be as large as 10. When we try to use

smaller than necessary values of Q, problems arise in determining how many and which

scenarios to use. Different values of Q and different combinations of scenarios give

different results. We found, however, that if the number of time periods is around 68,

then a Q of l0 can be used and the problem can be solved in a relatively short time. With

T, the number of time periods, equal to 68 a 17 hour day, divided into 15 minute periods,
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can be represented. This is an acceptable assumption because demand at night is low and

flights at night usually have no delays in landing.

The algorithm does not appear to be particularly sensitive to T. Varying T did not

appear to affect the results much. This gives flexibility to the user of the algorithm in

determining what value ofT to use. Depending on an airport's demand and capacity

profiles, different T values may be chosen. An airport with high peaks of demand and

more variability may require smaller time period lengths (a larger T), whereas an airport

with a uniform or flat demand profile and a stable capacity could use larger time period

lengths (a smaller T).

The ratio of the cost of air delay per time period to the cost of ground delay per time

period can influence what kind of ground-holding policy will be implemented. A high

ratio of air to ground cost will call for more ground-holding than a low ratio. Therefore,

this ratio should be determined carefully.

A comparison of the ground-holding algorithm with other flow control strategies

indicated that the algorithm offered the lowest total cost and close to the minimum amount

of delay possible. The ground-holding algorithm was also more consistent in its

performance under various situations than the other strategies.

The results of this thesis seem to indicate that a carefully developed ground-holding

policy will be beneficial in reducing delay costs, especially in situations where the demand

exceeds the capacity by a great deal. When using the ground-holding algorithm, we need

to be careful in choosing the number of probabilistic capacity scenarios used and the cost

ratio chosen. This algorithm can solve large problems quickly and should be able to be

used in practice. The GUI described in Chapter 3 shows that this algorithm, when

combined with a computer program, becomes a decision support system that solves

problems in real time, gives simple answers, and is user friendly.

5.2 Future Research

In this thesis, we have attempted to examine the potential use of a probabilistic

optimization model to solve the ground-holding problem for a single airport. We have
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tried to find the parameters that had the greatest effect on the results and running time.

An important outcome of the experiments was a better understanding of the sensitivity of

Richetta's algorithm to the probability distribution of the airport capacity and to the

number of capacity scenarios used.

We have found that it is better to use the true probability distribution, rather than an

approximation, and that as far as running time is concerned, this is a practical approach. It

would be beneficial, however, to do more research in this area. One possibility is to

connect Richetta's algorithm to a simulation tool in order to generate capacity scenarios

that model realistic situations. Now that we have seen that the algorithm's running time is

small, we could also examine Richetta's algorithm, using different classes of aircraft, and

run the same kind of experiments as in this thesis.

This thesis looked at the static model, which is a fair representation of an airport that

makes one decision at the start of the day for a ground-holding policy. Many airports,

though, are better represented by a dynamic model. Because our model can be solved

quickly and gives good results, it can be solved many times during the day, thereby

resembling a dynamic model. A logical next step for future research may be to perform a

probabilistic analysis of a dynamic ground-holding model and then do a comparison

between the dynamic model and the static model that is solved repeatedly through the day.

Air traffic flow is not the only area of transportation that the ground-holding strategy

can be applied to. Any type of situation in which there are flows into one node that

becomes capacitated could benefit from some kind of ground-holding policy.
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